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Astrophysical jets in the Universe
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Young stars and jets
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Cabrit et al. (I990)

Size of the jets >103 — 10* AU.

Jet velocity up to ~ 600 km/s.
Correlation between jet radiative
emission and disk luminosity.

Detection of several

components

within the jet (e.g. Dupree et al’05).
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Mirabel et al. (1998)

Size of the jets ~ few hundreds of AU

Jet velocity up to 0.95c .

* Correlation between disk luminosity

and jet associated emission.



Jets in Active Galactic Nuclei
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* Size of the jets of a few Mpc.

* Several components within the jet
(FR2).

* Jet velocity up to I'py ik ~10 (pc scale)
with a slower enveloppe.

* Correlation between disk luminosity
and jet associated emission.

: powerful lobe dominated doubles; jets often one-sided



Magnetized accretion-ejection paradigm

Toroidal magnetic field pinches the
plasma
-> Collimation of the jet.

Angular mometum given back to jet
matter => magneto-centrifugal
acceleration

#Magnetic field twisting provoked a
removal of the disk angular
momemtum

= Accretion




MHD simulations of accretion disks launching jets

e Casse & Keppens (2002,2004) presented
the first MHD simulations showing an
accretion disk launching steady jets.
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GRMHD simulations of accretion disks launching jets

* In the last decade, GRMHD codes have been able to partially depict outflows
launched from black-hole/accretion disks systems:

= |ets are highly time-dependent because of the ldeal GR-MHD paradigm.

= |nner jets are mainly Poynting dominated outflow.
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Astrophysical jets propagation :

non-relativistic MHD vs relativistic MHD

=> The shape of the surrounding cocoon varies from NR to R MHD jets.
Refl: time=218.74

log1tirho):min=0.693825, mux=3.797852

RMHD jet (Tbuk~8)

Keppens et al. (2008)



Astrophysical jets propagation :
Velocity of the terminal shock

=> Relativistic jet propagation with toroidal magnetic field
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= Formula for RHD jets (Marti et al. 1997)

ead position

where & is the relativistic enthalpy of the
beam while &, is the enthalpy of the ambiant <
medium

= Helical RMHD jets (i.e. toroidal and
poloidal magnetic field) head velocities are
typically ‘slower’ than purely poloidal jets...
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Astrophysical jets propagation :

non-relativistic MHD vs relativistic MHD

=» Propagation of the jet creates internal shocks.
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RMHD jet (Tbuk~8)
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The Diffusive Shock Acceleration (DSA)

SHOCK

reflection with energy loss

upstream S -
waves .

N\ A

=V,

upstream downstream

Supra-thermal particles can be accelerated in
the vicinity of shock waves.

DSA acceleration (aka Fermi acc.) consists in
multiple crossing of the shock front with a
energy gain at each cycle.

Particle transport properties have a huge
influence on the spectrum cut-off E_ ..

= Magnetic turbulence is a key element to
insure particle diffusion.
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Multi-scale description of DSA

* Describing the DSA of supra-thermal acceleration requires to both take into
account the thermal plasma AND the supra-thermal particle population.

Kinetic theory and MHD are to be considered at once

* One way to compute the supra-thermal particle population evolution is to use
Stochastic Differential Equations (SDE) to solve the Fokker-Planck equation.
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FC & Marcowith (2005)

Applications of MHD-SDE: AGN Hotspots
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F.Casse (2004)

Quasar 3C175
YLA Gem image (c) NRAD 1

* FR2 Hotpots are one the biggest shock fronts in the Universe
=> so one of the best candidates for UHECR ..




Applications of MHD-SDE: AGN Hotspots
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* Parameters of the simulation is constrained by observational data.
* Among a sample of 6 HS, only one is found capable of producing
UHECR thanks to its perpendicular shock configuration (3C273A).
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Non-resonant CR streaming instability near relativistic shocks
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* Prescribed CR electric charge destabilized
MHD waves in precursor of ultra relativistic
shocks.

« Relativistic Adapatative Mesh
Refinement MHD simulations describes
the magnetic perturbation growth (up to 12
refinement levels).
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Casse et al. (2013)

Non-resonant CR streaming instability near relativistic shocks
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Particles-In-Cell (PIC) simulations

= PIC simulations are based on the interaction between charged particles
moving into an electromagnetic field.

* Particles are prone to the Lorentz force

 Electromagnetic field is influenced by the motion of particles as they
provide space and time dependent electric charge and current
densities.

= Electromagnetic field is time advanced on a grid and Lorentz force is
interpolated from the closest vertices of the grid.
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PIC simulations: Diffusive shock acceleration

 Since Spitkovsky (2008), PIC codes have been proven capable to capture the
Fermi acceleration process together with the magnetic field amplification.

» Unfortunately PIC simulations only depict the beginning of the process
(magnetic amplification + supra-thermal particles production, e.g. Caprioli &
Spitkovsky 2014) because of computational limitations...

« The longest PIC run covers less than 1% of the acceleration region (Keshet et

al. 2009). An alternative approach has to be considered ...
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MHD including ‘cosmic rays’

= Taking into account supra-thermal particles into a thermal plasma modifies
the Ohm’s law as now the thermal plasma is no longer neutral and the total
current has to take into account the supra-thermal current

e

n.q(E+U.xB)=VP. = E=—UxB- 3§<§ + 8 (F — Tn) x B+ S

where
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= One can safely neglect thermal electron pressure gradient because of usual

MHD ordering provided that the magnetic field is not much smaller than
equipartition (Bai et al. 2015).

= The Hall term is significant on scales smaller than ¢/ wpi ..

E=—((1-0)U+0OUx) xB| ©={1=55%




MHD including ‘cosmic rays’

= RMHD momentum conservation reads

WO LG (k0T +PT) =—penE + (Fror — Tex) x B

=In classical MHD, the momentum equation is modified by the presence of a
source term accounting for the streaming of CR:
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= In RMHD framework the displacement current has to be taken into account so
one needs to reconsider the definition of RMHD conservative variables
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PMHDC simulations

= Particles in MHD Cells (PMHDC) simulations rely on

o the MHD description to time-advanced both the electromagnetic field and
thermal plasma mass density, velocity and energy.

e The PIC description to time-advanced the position and velocity of supra-
thermal particles.

=The PIC motion equations related to the particles are also modified according to
the new Ohm’s law (neglecting thermal electron pressure and Hall effect)
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Basics of Particle in MHD Cells simulations

MHD timestep I
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Preliminary Particle in MHD Cells simulations

= Here is an example of the effect of the streaming of particle through a

magnetized plasma (ongoing work)...
= PI(MHD)C code developed from the MPI-AMRVAC code (Keppens et al. 2012)

Pseudocolor
Var: absB
Constant.

Pseudocolor

VanMarle & Casse

—0.80
Max: 1.2
Min: 0.80




Outlook

ANR MACH project:
IAP(M. Lemoine) - LUPM (A. Marcowith)- IPAG(G. Pelletier) - APC(FC,A.].Van Marle),
CELIA (V.Tikhonchuk, E. D’Humiéres)- CEA/DAM(L. Gremillet)

Particle in (R)MHD Cells is a promising tool to describe particle
acceleration and MHD turbulence at once over a large distance.

One of the main goals of this new code is to develop state-of-art
PI(RMHD)C with full MPI parallelization and adaptative mesh refinement.

We plan to study acceleration of particles in all shock velocity regimes
(from non-relativistic to ultra-relativistic).

This formalism can be applied on any kind of environment where
thermal plasma harbors supra-thermal particle

Limitation ? —> Very small scale fluctuations cannot be addressed...



