

• Matter inflow in the GC: from the inner kpc to the inner A.U.

• Sgr A*: a not so quiet SMBH

Arched

- CR acceleration in the inner 200 pc
- The Fermi Bubbles

R. Terrier (APC CNRS/Univ. Paris 7)

Sagittarius A

OCEVU workshop on relativistic outflows, March 2016

0 light-years

Binary

.1 - 2843

Sickle

Energetic phenomena the GC region

What is the impact of the intense star formation at the GC

and of the SMBH past activity?

NGC 6782 (HST)

Our Galaxy from above:

the bar & the Central Molecular Zone NGC 6782 (HST)

300 pc

Our Galaxy from above:

the bar & the Central Molecular Zone

X₁ orbits

 X_2 orbits

Mass inflow rate:

0.1-1 M /yr

Morris+96

Inflow triggers intense star formation in the central 200 pc

Intersection of X1 and X2 orbits: compression and intense star formation

Star formation rate in the CMZ: 0.03-0.15 M_/yr

Ponti+15, see also Longmore+14 and many more

Star formation in the central 200 pc

Central Molecular Zone (CMZ) contains 2-6 10⁷ M_o of molecular matter Tsuboi+99, Molinari+11 etc

In form of massive molecular clouds and a diffuse molecular component (100 cm⁻³) Oka+05,Geballe12

Star formation in the central 200 pc

Young massive star clusters in the central 30 pc:

- Central: ~150 O & WR stars Did it form there? paradox of youth
- Arches: ~ 2Myr, central density up to 10⁵ M_o.pc⁻³
- Quintuplet : ~ 4 Myr, harbors the pistol star

Star formation through thermal X-ray emission

Through thermal lines: <mark>Si xiii</mark>, <mark>S xv</mark>, Ar xvii

SN rate: from 0.3 x 10^{-3} to 1.5 x 10^{-3} yr⁻¹

Kinetic energy released: 0.9 – 5 x 10⁴⁰ erg/s CR acceleration? outflows? Ponti+15

Star formation & large scale outflow ?

Indication of plasma emission extending at higher latitudes (at least up to 0.5° - 70 pc) Real edges? Exposure effect? Extension along latitude? Connection with larger structures?

A high latitude survey to be performed this year with XMM

Intense CR acceleration in the inner 200 pc?

Lemière+15

Diffuse VHE gamma-ray luminosity: $L_{_{VHE}} = 3 - 4 \ 10^{35} \text{ erg/s}$ A (small) excess of 6-9 w.r.t. local CR density

HESS collab. 2006

If CMZ is calorimetric to CR : expected $L_{y \downarrow F} \sim 1 - 5 \ 10^{37} \text{ erg/s}$

There must be efficient particle escape from the central region

- Advection by ~1000 km/s wind?
- Diffusive escape to the halo?

Crocker+11, Lacki+14, Yoast-Hull+14

12

10

8

6

4

2

0

-2

Jouvin+15

A CR excess in the central 30 pc?

HESS, > 250 GeV

 Iterative component fitting
 requires 30 pc feature centered on Sgr A*

Lemière+15

A CR excess in the central 30 pc

Apparent CR density profile consistent with integrated 1/r profile: a steady CR source at the GC. Sgr A*?

HESS collab. 2016

Sgr A*: a SMBH in quiescent state

Central (1pc) cluster of old stars + disk of young massive stars (< 6 Myr) Paradox of youth? Genzel+10

Sgr A*: a SMBH in quiescent state

Accretion driven by massive stars wind: accretion rate at Bondi radius: 10⁻⁵ M_o/yr (Baganoff+03)

Accretion rate at the SMBH: $10^{-9} \text{ M}_{o}/\text{yr} < \text{M}_{dot} < 10^{-7} \text{ M}_{o}/\text{yr}$

(Marrone+07)

Advected power (outflows) ~ 10^{39} erg/s

(Wang+13)

Sgr A* experiences faint but regular flares

Sgr A* exhibits flaring activity in X-rays Flare frequency: 1.1 ± 0.2 day⁻¹ Typical duration: ~ 1 ks dN/dL \propto L^{-1.9}

Neilsen+13

Most intense flares detected at $L_x \sim 5.10^{35}$ erg/s

(e.g. Porquet+08, Nowak+12)

A change in the flaring rate? Induced by G2 pericentre passage?

Ponti+15

Hard X-ray echo of past activity

Hard X-ray echo of past activity

Hard X-ray echo of past activity

The Fe $K_{\!_{\alpha}}$ emission of the CMZ 10 years apart

Large scale variations of 6.4 keV Fe K_a emission: At least 2 distinct flares with $L_x \sim 10^{39}$ erg/s O(100 yr) ago Ponti+10, Terrier+10, Nobukawa+11, Clavel+13, Soldi+14

A relic of a 100 kyr old event?

Nakashima+13 have discovered large region of recombining plasma emission 1.5° south of Sgr A*

Thermal energy content: 1.6 x 10⁵¹ erg

Relaxation timescale ~ 100 kyr

Origin?:

- Past star forming activity?
- Bipolar outflow from Sgr A*?
- Photo-ionization by jet emission from Sgr A*?

Nakashima+13

A Myr old Seyfert activity?

Balnd-Hawthorn+13 have found large ionization levels in a region of the Magellanic stream located below the south Galactic Pole

Steady disk ionization level too small. Enhanced GC emission required: ~0.1 L_{edd}

Bland-Hawthorn+13

Large scale outflows from the GC

1-5 GeV emission seen by Fermi

Su+10

Large scale outflows from the GC

Linearly polarized radio emission at 2.3 GHz

Carretti+13

Large scale outflows from the GC

Haze emission at 40 GHz

Planck collab, 2013

The Fermi Bubbles

 $L_{\gamma} = 4.4 \times 10^{37} \text{ erg/s}$

Hard spectrum $\Gamma = 1.9$

Cutoff energy ~ 110 GeV

No clear spectral evolution with latitude

Spectrum compatible with both electrons & protons

Flat structure with sharp edges: thickness $\sim 3 - 4^{\circ}$

Ackermann+14

The Fermi Bubbles

 $L_{\gamma} = 4.4 \times 10^{37} \text{ erg/s}$

Hard spectrum $\Gamma = 1.9$

Cutoff energy ~ 110 GeV

No clear spectral evolution with latitude

Spectrum compatible with both electrons & protons

Flat structure with sharp edges: thickness $\sim 3 - 4^{\circ}$

Ackermann+14

Fermi bubbles: radiation process?

IC of TeV electrons

- Livetime O(1 Myr)
- Energy requirement ~10⁵² erg
- Implies recent injection and rapid propagation
 - e.g. Zubovas+12, Guo+12
 - Consitent with no spectral evolution?
- Or (re)-acceleration in the bubbles
 - Distributed, e.g. *Mertsch+11*, termination shock, *Lacki14*

Hadronic interactions

- Low density in the halo implies large livetime: O(10 Gyr)
- Energy requirement ~10⁵⁵ erg

Fermi bubbles: mechanism?

Past AGN activity (in the last 10 Myr)

•	Jet model	Guo+12 etc.
•	Spherical outflow powered by luminous quasar	Zubovas+12
	 Collimation in biconical outflow by CMZ 	
•	Winds from increased hot accretion flow	Mou+14

Recurrent Sgr A* activity

Regular tidal disruption events (10⁻⁴⁻⁵ yr⁻¹)

Steady state star formation

• Emission from integrated population of CR accelerated by GC activity $L_p \sim 10^{39}$ erg/s. Requires 5 Gyr of confinement time!

Cheng+11,15

• Confinement of CR in gas condensation reduce cooling time to 100 Myr.

Crocker+14, Crocker+15

Crocker+11, Crocker12

Summary

Mass inflow on GC region powers sustained star forming activity

- Up to 3 10⁴⁰ erg/s released
- CR induced gamma-ray emission lower than expected
- A strong wind? Escape?

Presence of a CR density excess in the inner 30 pc

- Profile consistent with steady diffusive source at the GC
- Hard to explain with SNR acceleration only. Sgr A*?

Sgr A* is currently very inactive:

- Large power is advected out of the accretion flow: CRs?
- Evidences of various levels of increased activity in the past

Large outflows from GC region extending 10 kpc in the halo: Fermi Bubbles

- Signatures from radio to gamma-rays (100 GeV)
- SMBH activity? Starburst winds? Steady state/transient? Leptonic/hadronic?