Pulsar Wind Nebula TeV population, evolution, and the sources of Cosmic-Ray e^\pm

Yves Gallant1

(collaborators: S. Klepser, M. Renaud, N. Bucciantini, R. Bandiera, E. Amato…)

1 LUPM, CNRS/IN2P3, U. de Montpellier

OCEvU Workshop “The Physics of Relativistic Outflows”
IRAP, Toulouse, March 23, 2016

- TeV-emitting PWN population
- PWNe and cosmic-ray positrons
- PWN evolution phases
- Adiabatic and synchrotron losses
Galactic TeV γ-ray sources and PWNe

- HESS Galactic plane survey: longitudes $\ell \approx +65^\circ$ to -110°
- long-term, multi-stage survey (2004–2012); highly non-uniform
- in time, strategy to achieve more uniform minimal sensitivity

HESS excess map (Donath et al., H.E.S.S., 2015 ICRC)

- currently >100 Galactic TeV sources known (>75 in HGPS)
- $\sim 30\%$ identified as pulsar wind nebulae (PWNe) or candidates (HESS PWN population paper in preparation)
TeV γ-ray luminosity distribution of PWNe

- PWN TeV luminosities $L_\gamma = 4\pi D^2 F_{0.3-30\,\text{TeV}}$, plotted against (current) pulsar spin-down energy loss \dot{E}

- relatively narrow range of L_γ (~ 1 decade); median luminosity for established PWNe is $L_{0.3-30\,\text{TeV}} \approx 4 \times 10^{34}$ erg/s
- no correlation with \dot{E}, unlike L_X (Grenier 2009, Mattana et al. 2009)
- TeV γ-rays reflect history of injection since pulsar birth, whereas X-rays trace recently injected particles
PWN magnetic evolution and L_X/L_{TeV}

- naive interpretation of L_X/L_{TeV} suggests B decrease with age
- difference of electron lifetime also plays a role (for $B < 30 \mu G$, more pronounced as B decreases)

- Torres et al. (2014) model young TeV-detected PWNe [see also Tanaka & Takahara (2010,2011), Bucciantini et al. (2011), ...]

- Crab, G0.9+0.1, G21.5–0.9, MSH 15–52, Kes 75, ..., modelled with broken power-law injection, $1.0 < p_0 < 1.5, p_1 = 2.2–2.8$

- L_X/L_γ ratio evolution dominated by B-field decrease with age
- shorter lifetimes \Rightarrow more compact spatial distribution in X-rays
Nébuleuses de pulsars et prospective CTA

- nébuleuses tracent la formation d’étoiles massives (bras spiraux)
- détectabilité avec HESS bonne jusqu’au bras Scutum-Crux
- déficit de nébuleuses TeV dans le bras Sagittaire-Carène?
- ou densité moins élevée de photons-cible (IR et/ou stellaires)?

- détectabilité avec CTA jusqu’à 10–15 kpc suivant la luminosité L_γ, taille ℓ, et la configuration choisie (B, I, D)
Cosmic-ray positrons as new “messenger”?

- **PAMELA** (2009) measured positron fraction $e^+/\left(e^+ + e^-\right)$ increase with E, inconsistent with secondary propagation origin
- confirmed to higher E: *Fermi*-LAT (2012), AMS-02 (2013, 2014)

(from Linden & Profumo 2013)

(Aharonian et al. 2009)

- tending to $\sim 20\%$ up to $\left(e^+ + e^-\right)$ steepening at $E \sim 1$ TeV?
- spectrum and positron fraction require **primary** e^\pm source
Primary e^\pm from pulsars?

- copious e^\pm production in pulsar magnetospheres (Sturrock 1970)
- proposed as cosmic e^+ sources by several authors:

Aharonian et al. (1995)
Chi et al. (1996)
Zhang & Cheng (2001)

- dramatic increase in interest (ADS citations) since 2009!
- more recent studies: Grimani (2004, 2007), Büsching et al. (2008), Hooper et al. (2009), Delahaye et al. (2010)...
- dominant local contribution from Geminga, PSR B0656+14?
- source spectrum of e^+ for propagation mostly based on purely magnetospheric considerations...
Primary e^\pm from Pulsar Wind Nebulae!

1. although e^+ created in magnetosphere, thought to be **accelerated** to $E \gg$ TeV at wind termination shock

2. high-energy e^\pm are **confined** in PWN, cannot readily escape PWN & SNR and propagate as cosmic rays in the ISM; requires consideration of **adiabatic** and **synchrotron** losses during PWN evolution; full description very complicated

How bad can it be?

- this talk: quantify effect of adiabatic and synchrotron losses, assuming e^\pm remain confined in PWN until it dissipates in ISM (i.e. neglect **diffusive** escape from PWN and SNR)

PWN model assumptions and parameters

▶ model PWN as isobaric bubble of relativistic e^\pm and B (until late, bow-shock phases)

Pulsar wind

▶ injection of broken power-law spectrum of e^\pm, with γ_{break}, low and high spectral indices p_1 and p_2 independent of t
▶ constant magnetic energy fraction injected in nebula, $\eta \ll 1$
▶ wind power approximated as constant, $\dot{E} \approx 10^{38}$ erg/s, during free-expansion phase (dynamically unimportant thereafter)

Supernova remnant

▶ uniform ejecta, with $M_{\text{ej}} = 5M_\odot$ and $E_{\text{ej}} = 10^{51}$ erg
▶ expanding in uniform interstellar medium, $n_{\text{ism}} = 1 \text{ cm}^{-3}$

Pulsar birth velocity

▶ assume typical pulsar 3D velocity $V_{\text{psr}} = 400$ km/s (e.g. Hobbs et al. 2005, Faucher-Giguère & Kaspi 2006)
Initial PWN phases in composite SNRs

- PWN first expands in unshocked SN ejecta ("free expansion")
- four shocks: pulsar wind termination, PWN expansion, SNR reverse and forward shocks

![Density in Log10-scale](image)

density vs r and t
(Bucciantini et al. 2003)

- reverse shock eventually contacts PWN at SNR center
- PWN is initially "crushed" by shocked ejecta pressure
- in spherically symmetric simulations (e.g. MHD by Bucciantini et al. 2003), several reverberations before slower, steady expansion

![Diagram](image)

(Gaensler & Slane 2006)
Time evolution of PWN pressure (I)

- initial **free expansion** phase: \(P_{\text{pwn}} \propto t^{-13/5} \) (constant \(\dot{E} \))
- lasts until reverse shock hits, \(t_{\text{rs}} \approx 4 \text{ kyr} \)

\[P_{\text{pwn}} (\text{CGS units}) \]

![Graph showing pressure evolution with time](chart)

- compression phase, assumed
 \[\Delta t = t_{\text{rs}} \]

- subsonic expansion phase, in pressure equilibrium with remnant in **Sedov** (then radiative) phase: \(P_{\text{pwn}} = P_{\text{Sed}} \propto t^{-6/5} \)
- particles injected at \(t < 30 \text{ kyr} \) follow this evolution until \(P_{\text{pwn}} \approx P_{\text{ism}} : \text{relic PWN} \)
Bow-shock PWN phases

- Pulsar motion becomes **supersonic** relative to hot interior (in a Sedov SNR) at

 \[t_{\text{bow}} = 32 \left(\frac{E_{\text{SN}}}{10^{51} \text{erg}} \right)^{1/3} \left(\frac{n_0}{1 \text{ cm}^{-3}} \right)^{-1/3} \left(\frac{V_{\text{PSR}}}{400 \text{ km/s}} \right)^{-5/3} \text{ kyr} \]

- Leaves SNR and forms bow-shock PWN in **ISM** at \(t_{\text{cross}} = 2 t_{\text{bow}} \)
 (van der Swaluw et al. 1998)

Hydrodynamic simulation “Mouse” in X-rays and radio

(from Gaensler & Slane 2006)

- Wind termination shock balance with ram pressure: \(P_{ts} \approx \rho V_{\text{psr}}^2 \)
Time evolution of PWN pressure (II)

- $t > t_{bow} \approx 30$ kyr: **supersonic** bow-shock PWN in (Sedov) SNR
- fresh particles injected at post-shock pressure (then expand)

- $t > 2 t_{bow}$: bow-shock PWN in ISM
 \[P_{ts} \approx \rho_{ism} V_{psr}^2 \]

- adiabatic expansion (or compression) of relativistic gas:
 \[P \propto n^{4/3} \Rightarrow \left(\frac{\gamma_{inj}}{\gamma_f} \right) = \left(\frac{P_{inj}}{P_{ism}} \right)^{1/4} \]
Synchrotron losses: magnetic field evolution

- Magnetic field and relativistic gas have the same energy density behavior in expansion and compression ⇒ magnetic fraction η conserved (when radiative losses dynamically unimportant)

- $\eta = 0.03$ (0.01, 0.1): typical value, e.g. median in models of 9 PWNe by Torres et al. (2014)

- Peak B_{pwn} value after compression similar to that in young PWN, but acting over $t \sim 10^4$ yr...
Evolution of e^\pm energy

- adiabatic and synchrotron losses (for pre-bow-shock phases)
- particles injected with $E \to \infty$ at $\log t_{\text{inj}} = 1.5, 2, 2.5, \ldots, 5$

- early synchrotron burn-off: e^\pm with $t_{\text{inj}} \lesssim 100$ yr don’t contribute
- compression phase burns off earlier e^\pm to $E_f \lesssim 50$ GeV
Summary and Prospects

- PWN L_{TeV} distribution relatively independent of age or \dot{E}
- Galactic distribution traces recent star formation, target photons
- Cosmic-ray positrons can be created in pulsar magnetospheres, then accelerated and confined in Pulsar Wind Nebulae
- We quantify the effect of adiabatic and synchrotron losses, assuming good e^\pm confinement (late escape into the ISM)
- Compression phase burns off all earlier e^\pm to $E_f \lesssim 50$ GeV: only late PWN phases contribute to high-energy CR e^\pm
- Synchrotron losses less problematic for bow-shock phases: higher post-shock B, but rapid flow time to P balance
- Caveats: parameter uncertainties, e.g. η; compression burn avoided if e^\pm escape PWN before
- Further observational and theoretical studies of late-phase (compressed and bow-shock) PWNe will help clarify issues
- Combination of γ-ray (IC) and synchrotron morphologies can help disentangle spatial extent of e^\pm and B