Constraining the physics of SN/GRB jets thanks to the neutrino astronomy

Damien TURPIN

OCEVU astroparticle workshop : The physics of relativistic outflow

TOULOUSE 2016, March 22-24

HEN astronomy : our motivations

1/ Detection of a high energy neutrino signal from a cosmic accelerator

direct association with UHECR sources

So far no neutrino detection in coincidence with any SN/GRB

2/ Constraints on the hadronic models associated to the most promising astrophysical objects

2 different environements

The jet is **optically thick**

L-GRB

Jet expulsed in the **ISM medium** far away from the central engine. The baryon density of the jet is **« low » at high radius**

The jet is optically thin

High energy neutrinos from CCSNe jets

Hadronic processes in SN mildly relativistic jets

Ando&Beacom model : arXiv:astro-ph/0502521

pp interaction (baryon rich medium)

The Ando&Beacom model (A&B2005 : arXiv:astro-ph/0502521)

 $E_{k,0}^{jet} = 3 \times 10^{51} erg$ $\Gamma_0 = 3$

Energy breaks

$$E_{\nu,1} \propto \left(\frac{E_k^{jet}}{E_{k,0}^{jet}}\right)^{-1} \times \left(\frac{\Gamma}{\Gamma_0}\right)^5$$
$$E_{\nu,2} \propto \frac{\Gamma}{\Gamma_0}$$

 $E_{\nu,3}^{cutoff} \propto \frac{\Gamma}{\Gamma_0}$

Parameter scan and exclusion limits

Step 1: We produce a set of neutrino spectra with $\Gamma = [1-10]$ and $E_{k}^{jet} = [3.10^{49} - 3.10^{53}]$ erg

Step 2 : For each simulated spectrum we compute the expected number of neutrino detector, N_v

Step 3 : Assuming a Poisson distribution for the detected neutrino, the probability of detecting at least 1 neutrino given $N_v = 2.3$ is 90%. Models that exhibit more than 2.3 neutrino are therefore excluded at 90% C.L

Constraints on $E_{jet} \& \Gamma$ (ANTARES)

(c) d = 460 kpc.

(d) d = 50 kpc.

Constraints on E_{jet} & Γ (IC/KM3NeT) for a CCSNe at 10Mpc

Abbasi et al. 2012

PRELIMINARY

Limits on the rate of CCSNe with jet ρ

PRELIMINARY

Fraction of CCSNe with jets relative to an assumed CCSNe rate of 2.4.10⁻⁴ yr⁻¹ .Mpc⁻³ \rightarrow 1 CCSNe/year within 10Mpc Schiminovich, et al. 2005, Ando et al. 2005

Conclusion CCSNe

No 100GeV -10 TeV neutrinos discovered yet from CCSNe

ANTARES is able to exclude a large region of the E_{jet} – Γ plane for CCSNe at d<1Mpc. The ANTARES horizon limit is ~52Mpc. The non detection of GeV neutrinos from SN1987A (d= 51.4 kpc) by Kamiokande-II suggest no jet from this CCSNe</p>

Larger neutrino detector such as **IceCube** and **KM3NeT** are able to (almost) rule out the presence of a jet in CCSNe located at d<10Mpc

High energy neutrinos from GRBs

Hadronic processes in GRB relativistic jets

$p\gamma$ interaction (γ -ray photon rich medium)

EeV regime

$$p + \gamma \longrightarrow K^{+} + \Lambda/\Sigma$$

$$K^{+} \longrightarrow \mu^{+} + \nu_{\mu}$$

$$\pi^{-} \longrightarrow \mu^{-} + \overline{\nu}_{\mu}$$

$$\pi^{-} \longrightarrow \mu^{-} + \overline{\nu}_{\mu}$$

$$\mu^{-} \longrightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

Particle acceleration in (mildly) relativistic shocks

1st order Fermi process at the shock front

field

High energy neutrino spectrum : the main ingredients

Proton spectrum	Standard values
$N(E) \sim E^{-p}$ where $p \sim 2$	-
Photon spectrum (Band/SBPL/CPL/PL)	
$\alpha / \beta / Epeak / F_{y}$	-1 / -2 / 200 keV/ 10⁻⁵ erg.cm⁻² [1keV- 10 MeV1
GRB temporal characteristics	
$T_{_{90}}$ / $t_{_{min}}$ (only for IS)	50 s / 0.01 s
Composition of the jet and its dynamics	
$f_p = \frac{\varepsilon_p}{\varepsilon_e} / \varepsilon_e / \varepsilon_B \& \Gamma$	10 / 0.1 / 0.1 / 316
Distance/redshift	
7	2.15 (0.5 for SGRB)

GRB neutrino model : double broken power laws

Impact of f_p / Γ and ϵ_e / ϵ_B on the prompt IS neutrino spectrum

Impact of $f_{_{\rm D}}$ / Γ on the prompt PH neutrino spectrum

 $1 \rightarrow 200$

Constraints on the most fluent GRB GRB130427A

Constraints on the most fluent GRB GRB130427A

Constraints on the physics of GRB internal shocks

Constraints on the most fluent GRB GRB130427A

Constraints on the physics of GRB photospheric model

Constraints from a large population of GRBs

Combined IC analysis of 3 years of data (all sky) using shower-like event (v_e , v_{μ} , v_{τ}) and 4 years of Northern hemisphere track-like events (v_{μ})

807 stacked GRBs

Conclusion GRB

No TeV-PeV neutrino events yet detected from any GRBs by ANTARES or IceCube

The photospheric neutrino flux is already deeply constrained by the ANTARES/IceCube data.

Very low baryonic loading factor is asssumed for these kind of model $f_n < 10$ (and $f_n < 2-3$ for GRB130427A)

The Internal shock predictions start to be challenged by the IceCube detector placing restrictive limits on f_p for $\Gamma < 600-700$ for large population of GRBs ($f_p < 100$ for $\Gamma > 300$ for GRB-like 130427A)

Stacking analysis has to be interpreted carefully since there are a lot of unknowns : Γ Z F_{γ} Gamma-ray spectral parameters badly constrained Correlation between parameters

Are energetic GRBs the best candidate for a neutrino detection ?

Detectable GRBs by ANTARES/KM3NeT

$\mathbf{E}_{_{\text{iso}}} - \Gamma \text{ correlation}$

$E_{iso} - \Gamma$ correlation

Would we be able to detect one of those GRBs with ANTARES/KM3NeT?

A detailed simulation of a GRB population emitting HEN (NeuCosmA model used)

For GRBs located at z = 0.1

z limits ANTARES [-90°;-45°] + GRB population

The future with KM3NeT

Back up

IceCube/ANTARES A_{eff}

IC86

ANTARES [2007-2011]

Better than ANTARES for δ [-30°;90°]

Better than IC86 for δ [-30°;-90°] below E_v~ 100 TeV

Impact of f_p in the $E_{iso} - \Gamma$ plane

Connecting Γ with the peak of the optical afterglow

$$\Gamma(T_{peak}) \sim \frac{\Gamma_0}{2} = \left[\frac{3E_{iso}(1+z)^3}{32\pi nm_p c^5 \eta T_{peak}^3}\right]^{1/8}$$

Sari&Piran 1999 Molinari et al. 2007

Note that a refined expression for $\Gamma = f(T_{peak})$ has been reported in Ghirlanda et al. 2012. Results are quite similar.

