





NAOC, Beijing XIOPM, Xi'an CEA-Irfu, Saclay APC, Paris LAM, Marseille CPPM Marseille GEPI meudon IHEP, Beijing SECM, Shanghai IRAP, Toulouse IAP, Paris LAL Orsay LUPM Montpellior University of Leicester CNES, Toulouse

## **The SVOM mission**

Cordier Bertrand CEA-Saclay Wei Jianyan NAOC-Beijing On behalf of the SVOM consortium



## SVOM in context

• **SVOM = S**pace-based multiband astronomical Variable Objects Monitor



- SVOM is a **Chinese-French** space mission dedicated to the detection and study of **Gamma Ray Bursts** and their use for astrophysics and cosmology.
- SVOM is planned to be launched early in the next decade (2021), for a 3 year nominal mission.



## Scientific rationale of the SVOM mission

### **GRB** phenomenon

- Diversity and unity of GRBs

### **GRB** physics

- Acceleration and nature of the relativistic jet
- Radiation processes
- The early afterglow and the reverse shock

### **GRB** progenitors

- The GRB-supernova connection
- Short GRB progenitors

• Cosmology

- Cosmological lighthouses (absorption systems)
- Host galaxies
- Tracing star formation
- Re-ionization of the universe
- Cosmological parameters
- Fundamental Physics
  - Origin of High-Energy Cosmic Rays
  - Probing Lorentz invariance
  - Short GRBs and gravitational waves

# $5_{\rm VOM}$ SVOM in context at the beginning of the next decade

- SVOM is mini-satellite class mission (< 1000kg)
- SVOM will provide ~80 GRB/yr. It will explore the area of soft GRBs and X-ray Flashes (above 4 keV), and the prompt optical emission with a good sensitivity.
- We aim at measuring the redshift of >50% of SVOM GRBs
- SVOM will operate in the era of advanced GW detectors, providing the opportunity to search for correlations between GW and GRBs
- SVOM GRBs will benefit from follow-up with a new generation of astronomical instruments: JWST, SKA, CTA, LSST, etc.





## In space : ECLAIRs – The trigger camera



### Main characteristics

Coded mask telescope Wide FOV : 2 Sr 6400 CdTe - 1024 cm<sup>2</sup> 4 keV - 150 keV

### Anticipated performances

Loc. accuracy < 16 arcmin 4 arcmin for bright bursts 80 GRBs / year

Change of the coded mask pattern to enhance the sensitivity, but with a larger location error box is See Posters : The ECLAIRs telescope Schanne et al. The ECLAIRs trigger Antier et al.

Rome - December 2, 2014





Enlargement of the FoV to enhance the detection rate of short bursts (which are expected to be candidate sources of GW bursts)



## In space : MXT – The Multi-channel X-ray Telescope



### Main characteristics

MCP "Lobster eyes"X-ray optic FOV ~ 1 deg<sup>2</sup> 256 x256 PN CCD 0.2 keV - 10 keV

### **Anticipated performances**

~50 cm<sup>2</sup> at 1 keV Loc. accuracy < 1 arcmin 20 arcsec for bright GRB ~ 70 GRBs/yr

See Poster : The MXT telescope , Götz et al



## In Space : VT – The Visible Telescope







### Main characteristics

Ritchey Chretien ⊕ =40cm FOV : 26 x 26 arcmin<sup>2</sup> 2 X 2048x2048 CCD 400 nm - 650 nm 650 nm - 950 nm

### **Anticipated performances**

Fine Guidance System Loc. accuracy < 2 arcsec Mv = 22.5 in 300s ~ 60 GRBs/yr



inclination 30°, altitude 625 km, launched by a LM-2C from Xichang Attitude law : roughly antisolar



## SVOM attitude law

<u>Objective</u>: Most of the GRBs (up to 75-80%) detected by SVOM to be well above the horizon of large ground based telescopes, all located at tropical latitudes

Solution: the attitude law (optimization at system level)

- Offset of 45° with respect to the antisolar direction
- Avoidance of the Galactic Plane (+/-10° from the edge of ECLAIRs FOV)
- Avoidance of the Sco X1 source (outside the ECLAIRs FOV)
- If possible, edge of the ECLAIRs FOV at low latitudes
- Tolerance of 5° with respect to the nominal pointing



# SVOM

## Prompt Dissemination of GRB Parameters

Alerts are transmitted to a network of 30-40 VHF receivers on Earth by the on-board VHF emitter. Goal: 65% of the alerts received within 30 sec



If you are interested to host a VHF station, please register at : http://hosting.svom.fr/



By following up half the FOV of ECLAIRs, GWACs will explore the realm of the prompt optical emission



| > | Cameras:      | 36                            |
|---|---------------|-------------------------------|
| > | Diameter:     | 180mm                         |
| > | Focal Length: | 213mm                         |
| > | Wavelength:   | 500-800nm                     |
| > | Total FoV:    | 5000Sq.deg                    |
| > | Limiting Mag: | 16.0V(5 <sub>0</sub> , 10sec) |
| > | Self Trigger: | <15sec                        |
|   |               |                               |

One subsystem in China, one subsystem in Chile (under discussion)



## GFTs: Two Ground-based Follow-up Telescopes

GFTs permit the fast identification and measure of early optical/NIR afterglows (light-curve, SED) from the ECLAIRs positions, while the spacecraft is slewing to the source.

- C-GFT is located at Xinglong observatory (China)
- F-GFT will be located at San Pedro Martir (Mexico)



Diameter : 100 cm FOV : 25 arcmin x 25 arcmin 400 – 1000 nm (1700 nm TBC) Diameter : 100 cm FOV : 30 arcmin x 30 arcmin 400 – 1700 nm



## SVOM multi-wavelength capabilities



Space and ground instruments join to enable a unique coverage



## SVOM unique capabilities for GRB studies

- Low energy threshold at 4 keV to detect soft GRBs
- Measure of GRB prompt emission over 6 decades in energy, from 1 to  $\sim 10^6$  eV.
- Good sensitivity to short GRBs with GRM and ECLAIRs (soft bump)
- Many consecutive orbits with the same pointing, allowing the detection of hour long transients, like the 15000 sec long GRB 111209A at z=0.677
- Good sensitivity of VT, providing accurate GRB positions for >70% of the bursts. Dedicated NIR & vis. ground follow-up telescopes increase this fraction to >80%
- Large fraction of the afterglows seen by both MXT and VT.
- GRBs well located for ground-based follow-up



## SVOM and highly redshifted GRBs at the beginning of the next decade

- We expect to detect ~5 GRBs/yr at redshift z>5 with ECLAIRs.
- We aim to quickly identify high-z GRBs, thanks to the pointing strategy of SVOM, the sensitivity of VT, and fast NIR follow-up on the ground.
- This strategy will permit to set up an efficient Follow-up Program performing the optical spectroscopy of most of highly redshifted afterglows, allowing crucial scientific studies.
- Highly redshifted GRBs allow studying the young universe:
  - Gas and dust in young galaxies
  - Reionization of the IGM
  - Star formation rate
  - Search for GRBs from Population III stars (challenging)
    (rare, energetic, possibly very long like GRB111209A, with no detectable host)



GRB II session, Wednesday



### SVOM and Gravity Waves at the beginning of the next decade

- Coordinated searches of GWs and short GRBs may confirm or dismiss the favorite scenario for short GRBs: the coalescence of two compact objects
- From 2023 the Size of the GW error boxes will be several degrees<sup>2</sup>
- Coincident events: within the horizon of GW detectors (~400 Mpc), with assumption of 50 BNS/yr, we expect in 5 years of operation.
  ~3 events in ECLAIRs FOV
  ~9 events in GRM FOV
- **Follow-up:** within the same assumptions, we expect ~15 events in 5 years of operation that can be followed quickly with SVOM instruments, and particularly with the MXT (<6hours) and with the GWACs







## Conclusions

- SVOM is the inheritor of Swift. We tried to optimize the SVOM mission thanks to the Swift scientific return
- SVOM, like Swift, will be a highly versatile astronomy satellite, with built-in multi-wavelength capabilities, autonomous repointing and dedicated ground follow-up.
- SVOM will have a broad science return thanks to its unique instrumental combination of 3 wide-field instruments: ECLAIRs, GRM, GWAC, and 3 narrow-field instruments: MXT, VT, GFTs.
- SVOM has the possibility to detect and localize short GRBs associated to GW events, even if it is challenging. Such a detection would represent the "holy grail" of GW astronomy.

NAOC, Beijing IHEP, Beijing XIOPM, Xi'a SECM, Shanghai CEA-Irfu, Saclay IRAP, Toulouse APC, Paris IAP, Paris LAM, Marseille **Obs Strasbourg** LPAG Grenoble LUPM Montpellier LAL Orsay **GEPI** Meudon LPC2E Orléans University of Leicester MPE, Garching CNES, Toulouse

launch 2021

Phase B kick-off September 2014



() 中國科学院 CHINAN ACARDY OF MERNES



## GO SVOM!

20



## SVOM Compared to SWIFT

### **Prompt emission measurement**

- More sensitive below 20-30 keV
- Peak energy measurement capability
- Multi-wav elength capabilities from visible band to MeV gamma rays

### Afterglow emission measurement

- > 10 more sensitive in the visible
- Sensitiv e in the 650-950 nm band

### **Follow-up observations**

- Dedicated follow-up robotic telescopes
- GRBs much easily scrutinized by the largest telescopes

### **Follow-up observations**

- Instrument with large FOV sensitive around 500 keV
- X-ray telescope with larger FOV
- SVOM will operate in the era of advanced GW detectors

At the beginning of next decade, SVOM will be the 'proud' successor of SWIFT