Protostars: Forges of Cosmic Rays?

Marco Padovani (LUPM - Montpellier)

Alexandre Marcowith – Patrick Hennebelle – Katia Ferrière

Daniele Galli – Al E. Glassgold – Paola Caselli – Alexei Ivlev
Cosmic rays and interstellar medium in one slide

see e.g. Caselli & Ceccarelli (2012) for a recent review

see e.g. Caselli & Ceccarelli (2012) for a recent review

key-brick parameter:
- observed molecular abundances;
- chemical models;
- non-ideal MHD simulations.
Diffuse regions
Starless cores
Massive protostellar envelopes

PM, Galli & Glassgold (2009)

Shaw+ (2008)
Indriolo+ (2012)
Gerin+ (2010)
Neufeld+ (2010)
Caselli+ (1998)

Maret & Bergin (2007)
Ceccarelli+ (2004)

Boisanger+ (1996)
vander Tak+ (2000)
Doty+ (2002)
Hezareh+ (2008)

“Spitzer” value
set by decay of short- and long-lived radionuclei
Cleeves+ 2013; 2015

HCO⁺, DCO⁺
Guélin+ 1977
Caselli+ 1998
Maret & Bergin 2007

H₃⁺, OH⁺, H₂O⁺
McCall+ 1993; Geballe+ 1999;
Gerin+ 2010; Neufeld+ 2010
New results from IRAM-30m, Herschel & GMRT

Recent studies suggest unexpected high ionisation rates in Class 0/I protostars

- $\zeta \sim 3 \times 10^{-16} \text{ s}^{-1}$ in L1157-B1
 (Podio, Lefloch, Ceccarelli, Codella & Bachiller 2014);

- $\zeta \sim 4 \times 10^{-14} \text{ s}^{-1}$ and $8 \times 10^{-12} \text{ s}^{-1}$ in OMC-2 FIR 4
 (Ceccarelli, Dominik, López-Sepulcre, Kama, Padovani, Caux & Caselli 2014);

 and tentative evidence for synchrotron emission

- $S_{\nu} \propto \nu^{-0.89 \pm 0.07}$ in the bow shock of DG Tau;
 (Ainsworth, Scaife, Ray, Taylor, Green & Buckle 2014);

What are the possible sources of energetic particles?
CR propagation in 3D simulations of collapsing rotating core

Intermediate magnetisation $\lambda=5$
Perpendicular rotator $(J,B)=\pi/2$

Field lines in the inner 600 AU

PM, Hennebelle & Galli (2013)
Acceleration sites

1. accretion flows;
2. protostellar surface;
3. jet shock;

Diffusive Shock Acceleration (DSA) or First-order Fermi acceleration
Conditions to be fulfilled

Condition on flow velocity: supersonic and super-Alfvénic.

(1) Shock acceleration rate larger than collisional loss rate;
\[E_{\text{max}}^{\text{loss}} > E_{\text{max}} \]

(2) Acceleration time shorter than dynamical time;
\[E_{\text{max}}^{\text{age}} < E_{\text{max}} \]

(3) Shock geometry: particles have to be accelerated before they start to escape by diffusion processes.
\[E_{\text{esc}}^{\text{max}} = \min[E_{\text{esc, u}}^{\text{max}}, E_{\text{esc, d}}^{\text{max}}] \]

Presence of an incomplete ionised medium: neutrals can decrease the effectiveness of the DSA mechanism damping the particle’s self-generated Alfvén waves that are responsible of the particle scattering back and forth the shock (Drury+ 1996);
\[E_{\text{max}} = \min[E_{\text{loss}}^{\text{max}}, E_{\text{age}}^{\text{max}}, E_{\text{esc}}^{\text{max}}, E_{\text{damp}}^{\text{max}}] \]
Parameters needed for the model

<table>
<thead>
<tr>
<th>site*</th>
<th>U [km s$^{-1}$]</th>
<th>T [K]</th>
<th>n_H [cm$^{-3}$]</th>
<th>x</th>
<th>B [G]</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{E}</td>
<td>$1 - 10$</td>
<td>$50 - 100$</td>
<td>$10^7 - 10^8$</td>
<td>$\leq 10^{-6}$</td>
<td>$10^{-3} - 10^{-1}$</td>
</tr>
<tr>
<td>\mathcal{J}</td>
<td>$40 - 160$</td>
<td>$10^4 - 10^6$</td>
<td>$10^3 - 10^7$</td>
<td>$0.01 - 0.9$</td>
<td>$5 \times 10^{-5} - 10^{-3}$</td>
</tr>
<tr>
<td>\mathcal{P}</td>
<td>260</td>
<td>9.4×10^5</td>
<td>1.9×10^{12}</td>
<td>$0.01 - 0.9$</td>
<td>$1 - 10^3$</td>
</tr>
</tbody>
</table>

* $\mathcal{E} = $ envelope $\mathcal{J} = $ jet $\mathcal{P} = $ protostellar surface

Refs: U_{sh} (Raga+ 2002,2011; Hartigan & Morse 2007; Agra-Amboage+ 2011); T (Frank+ 2014); n_H (Lefloch+ 2012; Gómez-Ruiz+ 2012); x (Nisini+ 2005; Podio+ 2006; Antoniucci+ 2008; Garcia López+ 2008; Dionatos+ 2010; Frank+ 2014; Maurri+ 2014); B (Tesileanu+ 2009, 2012)

For protostellar surface shock, parameters from Masunaga & Inutsuka (2000)

- DSA works only for protons (electrons lose energy too fast, $E_{\text{max}}(e) < 300$ MeV);
- DSA is effective only in jet and protostellar surface shocks (in accretion flows, x and U_{sh} are too small, quenching the particle acceleration; B is as large as to produce a sub-Alfvénic shock).
The jet morphology is far from being universally defined.

- jet lengths spread over orders of magnitudes;
- usually there is not a single final bow shock, but innermost knots are resolved into bow shocks (time-variable jet emitting dense-gas bullets, McCaughrean+ 2002);
- jet angle variations due to precession (Devine+ 1997) or orbital motions (Noriega-Crespo+ 2011);

For the sake of clarity we consider

- a single shock at $R_{sh}=100$ AU from the protostar;
- follow the propagation up to the rBS and the HS.

energy losses (Padovani, Galli & Glassgold 2009)
magnetic effects (Padovani & Galli 2011, 2013;
Padovani, Hennebelle & Galli 2013)
• Thermal p acceleration in an inner shock;
• propagation up to the rBS also accounting for the generation of secondary e;
• rBS: acceleration of new component of thermal p PLUS re-acceleration of previously accelerated p/e;
• propagation in the hot-spot region.
Ainsworth+ (2014) detected synchrotron emission (GMRT) towards the bow shock (knot C) of DG Tau, speculating that this could be due to relativistic electrons accelerated in the interaction between the jet and the ambient medium.

Using results by Lynch+ (2013), EVLA obs.

Application of the modelling: comparison with available observations

\[\alpha = -0.98 \]

\[\alpha = -0.89 \pm 0.07 \]
Application of the modelling: comparison with available observations

Podio+ (2014): $\zeta=3\times10^{-16}$ s$^{-1}$ in the bow shock B1 in L1157 (HCO$^+$, N$_2$H$^+$).

- Youngest knot B0 at 1.2×10^{3} AU; B1 at 1.7×10^{4} AU with an hot-spot cavity radius of 1.2×10^{3} AU (Lefloch+ 2012);
- source distance: 250 pc (Looney+ 2007);
- $v_{flow}\approx100$ km s$^{-1}$, $v_{jet}=20-40$ km s$^{-1}$ (Bachiller+ 2001; Tafalla+ 2015);
- $n_H=10^5-10^6$ cm$^{-3}$ (Gómez-Ruiz+ 2015);
- embedded source, $T=60-200$ K (Podio+ 2014), but hints of $T=10^3$ K (Busquet+ 2014) to explain water lines.

Our modelling: $\zeta=6.1\times10^{-16}$ s$^{-1}$

The values of all parameters can vary along the shock surfaces B0 and B1, this is why our result has to be interpreted as a proof of concept.

Need of polarimetric observations (ALMA) to constrain B configuration
Application of the modelling: comparison with available observations

Podio+ (2014): $\zeta = 3 \times 10^{-16} \text{ s}^{-1}$ in the bow shock B1 in L1157 (HCO$^+$, N$_2$H$^+$).

- IS CRs, for a Voyager-like spectrum cannot explain the ionisation rate observed;
- the contribution of the hot spot CR flux become negligible at $R < 5 \times 10^3$ AU (geometric dilution factor).

Check on gas temperature, accounting only for the heating due to IS and locally generated CRs (neglecting UV from ISRF).

$$\frac{T_d(R)}{K} = 300 \left(\frac{R}{\text{AU}} \right)^{-0.41}$$ (Chiang+10,12)

- $R < 300$ AU: gas-dust coupling;
- 300 AU $< R < 3000$ AU: $T_g \downarrow$ (IS CR heating weak);
- $R > 3000$ AU: $T_g \uparrow$ (hot spot CR heating).
Application of the modelling: comparison with available observations

Ceccarelli+ (2014): \[\begin{align*}
\zeta &= 1.5 \times 10^{-12} \text{ s}^{-1} \text{ at } 1600 \text{ AU} \\
\zeta &= 4 \times 10^{-14} \text{ s}^{-1} \text{ at } 3700 \text{ AU}
\end{align*} \] in OMC-2 FIR 4 (HCO\(^+\), N\(_2\)H\(^+\)).

Caveats (for the application of our modelling):
- it contains a cluster of a few embedded intermediate- and low-mass protostars (Shimajiri+ 2008; López-Sepulcre+ 2013);
- no jet activity detected so far;

Protostellar surface acceleration model (parameters from Masunaga & Inutsuka 2000).

Fig. 3. Velocity-integrated PdBI contour maps obtained towards OMC-2 FIR 4, overlaid on the naturally weighted continuum map (grey scale).

| ![Image of contour maps and polygons](Image) | }
Application of the modelling: comparison with available observations

Ceccarelli+ (2014): \[\begin{cases} \zeta = 1.5 \times 10^{-12} \text{ s}^{-1} \text{ at } 1600 \text{ AU} \\ \zeta = 4 \times 10^{-14} \text{ s}^{-1} \text{ at } 3700 \text{ AU} \end{cases} \] in OMC-2 FIR 4 (HCO\(^+\), N\(_2\)H\(^+\)).

- Geometrical dilution factor:
 - free-streaming case \(\rightarrow R^{-2} \)
 - diffusion with \(R_{\text{diff}} \gg R \rightarrow R^{-1} \) (Aharonian 2004)

Check on gas temperature: the case \(R^{-1} \) gives too large values of \(T_g \) with respect to those computed by a LVG analysis (Ceccarelli+ 2014).

\[\rightarrow \text{The propagation mechanism is probably neither purely diffusive nor free streaming.} \]
Local CRs could be responsible for the formation of short-lived radionuclei (^{10}Be) contained in calcium-aluminium-inclusions of carbonaceous meteorites.

$[^{10}\text{Be}]_{\text{meteorites}} \gg [^{10}\text{Be}]_{\text{ISM}}$.

Hypothesis: *spallation reactions* during the earliest phases of the protosolar nebula.

Fluence per unit time:

$$F_t(E_{\text{min}}) = 2\pi \int_{E_{\text{min}}}^{E_{\text{max}}} j(E) dE$$

$E_{\text{min}} = 50$ MeV: energy threshold for $p + ^{16}\text{O} \rightarrow ^{10}\text{Be} + \ldots$

$F_t = 2 \times 10^{17}$ protons cm$^{-2}$ yr$^{-1}$ (purely diffusive case)

$F_t = 8 \times 10^{18}$ protons cm$^{-2}$ yr$^{-1}$ (free-streaming case)

An irradiation of few tens of years can explain the values of the fluence derived by Gounelle+ (2013) equal to 10^{19}-10^{20} protons cm$^{-2}$.
Conclusions

★ Set of conditions to be fulfilled highly non-linear: small variations in one or more parameters (B, x, n_H, T, U_{sh}, η, k_u) can make the acceleration process inefficient. Since a protostar is a highly dynamic system, particle acceleration can be a very intermittent process.

E.g.: a local increase of ζ corresponds to a local variation of x, varying the efficiency of the acceleration mechanism.

★ High-resolution observations (e.g. with ALMA and NOEMA) will help to have better constraints, with a special consideration for the magnetic field configuration. Besides (B, x, n_H, T, U_{sh}, η, k_u) are not constant all along the shock surface ⇒ modelling improvements.

★ A number of observations can be explained by our modelling: synchrotron emission in DG Tau, ionisation rate in L1157-B1 and OMC-2 FIR 4.

★ The most limiting condition on E_{max} is the geometry of the jet, in particular R_\perp. Far from the source, R_\perp increases and less and less particles are lost in the perpendicular directions. Particles can be accelerated up to 1-10 TeV (CTA targets?).

★ Comparison with possible competing effects (X-ray ionisation).

★ Role of turbulence (Does the dilution factor goes with R^{-2} or R^{-1}?)

★ We need more observations (statistics).