

Les sursauts gamma vus par Fermi

Frédéric Piron

Laboratoire Univers et Particules de Montpellier (CNRS / IN2P3)

Atelier OCEVU "The physics of relativistic outflows" IRAP, 22 mars 2016

Detection statistics

- GRB observations with *Fermi*
 - Common properties at high energies
 - Focus on GRBs 090926A and 130427A
 - Physical implications and open questions
- Summary and outlook

Fermi GRB statistics

- The GBM detects ~240 GRBs / year, ~45 of them are short
- The LAT detects ~10% of GBM GRBs in its field-of-view above 100 MeV
 - LAT bright GRBs with good localizations are all followed-up by Swift
 - From z=0.145 (GRB 130702A) to z=4.35 (GRB 080916C)

LAT bursts: bright, fluent and energetic

GRB 090926A multi-detector light curve

- Fluence = 2.2 x 10⁻⁴ erg cm⁻²
- $E_{iso} = 2.2 \times 10^{54} \text{ erg}$
- Correlated variability in various bands with a sharp spike at T₀+10 s
 - All energy ranges synchronized (<50 ms)
 - Low and high energies are co-located or even causally correlated
- LAT >100 MeV emission is delayed (~4 s)
 - Delay > spike widths
- LAT >100 MeV emission is temporally extended
 - Well after the prompt phase
 - 19.6 GeV photon detected at T₀+24.8 s

F. Piron - Atelier OCEVU, 22/03/2016

GRB 130427A multi-detector light curve

- Highest γ-ray fluence ever (> 10⁻³ erg cm⁻²)
- E_{iso} = 1.4 x 10⁵⁴ erg
- Brightest LAT GRB
 - >500 photons >100 MeV
 - 15 photons >10 GeV
- Unlike other bright LAT GRBs, the LAT >100 MeV emission is temporally distinct from the GBM emission
- LAT >100 MeV emission is delayed and temporally extended
 - Delay ~10 s, continues well after the prompt phase
 - 73 GeV photon detected at T_0 +19 s

Ackermann et al. 2014, Science 343, 42

F. Piron - Atelier OCEVU, 22/03/2016

Temporal properties

Ackermann et al. 2013, ApJS 209, 11

- The delay in the onset of the >100 MeV emission and its temporal extension are common to the vast majority of LAT-detected GRBs
- Suggests independent emission processes at keV-MeV and >100 MeV energies

- Brightest X-ray afterglow ever detected
- Longest-lived gamma-ray emission: LAT emission detected for 19 hours
- LAT light curve is ~smooth
- LAT spectrum described by a power law at all times
 - Spectral index $\alpha_{EX} \sim -2$
- Common features between 5 -2.0 LAT and lower energy light 5 -2.5 curves -3.0
- Record breaking 95 GeV photon at T₀+244 s

Ackermann et al. 2014, Science 343, 42

Long-lived GeV emission (1/2)

- At late times, GRB >100 MeV emission is compatible with an afterglow origin
 - Smooth decay of the luminosity $L(t) \sim t^{-\delta}$ similar to the visible / UV / X-ray afterglow
 - No noticeable spectral evolution (see previous slide)

Long-lived GeV emission (2/2)

- Broken power-law decay in 3 cases
 - Decay index δ decreases from ~2 to ~1 after the time of the break (> GBM T₉₅)
 - Transition between prompt- and afterglow-dominated phases?

• At very late times: $\delta \rightarrow \delta_{L} \sim 1$ for all bursts

- Except for the long GRBs 080916C and 110731A, which have the shortest intrinsic durations \rightarrow break still possible at later times
- $\alpha_{_{EX}} \sim -2$ and $\delta \sim 1 \rightarrow$ synchrotron emission from a blast wave in adiabatic expansion

Swift and *Fermi* view of the short GRB 090510

- Fit of the afterglow SED at 5 different times simultaneously
- Fit of the SED at T_0 +100 s
- >4.5 σ cooling break at ~20 MeV

• Forward shock synchrotron emission model can reproduce the spectrum from the visible domain up to GeV energies

GRB 130427A: a challenge for synchrotron models

- Synchrotron radiation models predict a maximum synchrotron energy, derived by equating the electron acceleration and synchrotron radiative cooling timescales
 - Assuming a single acceleration and emission region
 - E_{max} ~ 79 Γ (t) MeV, with Γ (t) given by Blandford & McKee (1976) in the adiabatic limit

The LAT highest energy photons are incompatible with having a synchrotron origin

GRB 130427A prompt emission spectrum

 Unlike other bright LAT-detected GRBs, the extral PL component becomes significant only after the GBM-detected emission has faded

GRB 090926A prompt emission spectrum

Extra PL component

- Starts delayed (~9 s)
- Persists at longer times
- Dominates > 10 MeV

Spectral cutoff

- Significant in bin c, marginally in bin d
- Shape not constrained
- First measurement of the jet Lorentz factor
 - Γ ~ 200-700
 - If cutoff due to $\gamma\gamma$ absorption

v F_v (erg/cm²/s)

Model dependent

Ackermann et al. 2011, ApJ 729, 114

Extra PL component vs. keV-MeV spectrum

Ackermann et al. 2013, ApJS 209, 11

- Band function index β (from a joint GBM+LAT fit during the GBM $T_{_{90}}$) vs. PL index $\alpha_{_{EX}}$ (from a LAT fit after the GBM $T_{_{95}}$)
- α_{EX} very stable, not correlated with β \rightarrow afterglow origin of the high-energy emission is reinforced

Gray points: joint fits which require an extra PL during the GBM T₉₀

→ the FS synchrotron emission can be dominant during the early afterglow phase, while the prompt keV-MeV emission remains detectable \rightarrow GeV emission from internal shocks still required for highly variable episodes

 Disentangling both contributions <u>needs time-resolved spectra AND</u> <u>variability study</u> (pulse width, lags...)

GBM GRB spectra

- The Band function is no longer the best phenomenological model
- Several deviations from the Band function
 - At low energies: BB component, low-energy flux excess
 - At high energies: extra PL component, sometimes attenuated (cutoff)

F. Piron - Atelier OCEVU, 22/03/2016

Possible origins of the "prompt" high-energy emission

• Leptonic models (e.g., internal shocks and inverse-Compton or SSC processes)

- HE onset time: hard to produce a delay longer than spike widths
- Hard to produce a low-energy (<50 keV) flux excess (e.g., GRBs 090510, 090902B)
- Hard to account for the Band α (line of death problem)
- Better agreement with observations in some cases including a photospheric emission component

• Hadronic models (internal shocks and proton synchrotron or cascades)

- HE onset time = time to accelerate protons & develop cascades?
- Synchrotron emission from secondary e± pairs can naturally explain the low-energy flux excess
- Proton synchrotron radiation requires large B-fields
- Both scenarios require substantially more energy (1-3 orders of magnitude) than observed (much less stringent constraint with lower values of Γ)
- Hard to produce correlated variability (e.g., spike of GRB 090926A)

• Early afterglow (forward shock and electron synchrotron)

- HE onset time = time required for FS to sweep up enough material and brighten
- Hard to explain rapid high-energy variability observed in some bursts (e.g., GRBs 090902B, 090926A)
- Hard to produce correlated variability (e.g., spike of GRB 090926A)

>GeV photons + fast variability (t_v) + large luminosities (L_{iso} ~ 10⁵⁰-10⁵³ erg/s)

For a source at rest

- The size of the emitting region is small enough (R < ct_v) for photons of energy $\epsilon = E_{ph} / m_e c^2 \sim 1$ to annihilate in pairs ($\gamma \gamma \rightarrow e^+e^-$)
- Opacity τ_{γγ}(ε) ~ σ_Tn_{ph}(1/ε)R = σ_TL_{1/ε}/(4πm_ec³R) > 10¹³ L_{1/ε,51}(t_v/10 ms)⁻¹ → a thermal spectrum, not observed → compactness problem
- For a source with relativistic motion, $\tau_{\gamma\gamma}$ is reduced by a factor $\Gamma^{2(1-\beta)}$
 - − -β ~ 2-3 and $\tau_{\gamma\gamma}$ < 1 ⇒ Γ > Γ_{min} ~ 100 (increases with 1/t_v, E_{max}, z and flux)
 - The attenuation in the spectrum is shifted to an energy E / 1 MeV ~ Γ
- The spectrum of the target photons needs to be measured during the short variability time scales of the high-energy emission

GRB 090510

F. Piron - Atelier OCEVU, 22/03/2016

- Γ_{min} ~1000 for 3 of the 4 brightest LAT bursts showing an extra PL component with no attenuation
- Γ_{max} ~150-650 for 6 GBM bright bursts not detected by the LAT (spectral softening at tens of MeV)
 - Assuming 100 ms variability and 1<z<5 (except GRB 091127, with known redshift)

- Target photon field for γγ absorption assumed uniform, isotropic and time-independent
 - Granot et al. 2008, Hascoët et al. 2012 give significantly (~3 times) lower Γ values
 - Error bar for GRB 090926A accounts for different models

- Independent constraints from early afterglow models
- The jet Lorentz factor can be derived from the fireball energetics and from its deceleration time (taken as the peak flux time in the LAT light curve)
 - ISM of constant density (Blandford & McKee 1976, Sari et al. 1998, Ghisellini et al. 2010)

GRB 090926A revisited: event statistics

Number of events	447	1088	2.4
[30 MeV-50 MeV]	33	243	7.4
[50 MeV-100 MeV]	95	381	4.0
[100 MeV-0.5 GeV]	257	391	1.5
[0.5 GeV-1 GeV]	29	40	1.4
[1 GeV-10 GeV]	32	32	1
> 10 GeV	1	1	1

M. Yassine et al., Fermi Symposium (Nov. 2015)

GRB 090926A revisited: best fit model (1/2)

M. Yassine et al., Fermi Symposium (Nov. 2015)

An extra high-energy power law (CUTPL) extending down to ~10 keV is not physically motivated (not expected from an IC component)

Use a power law with a break at low energy (Band + CUTBPL)

GRB 090926A revisited: best fit model (2/2)

The Band + CUTBPL model fits well the data in the time bins c and d

M. Yassine et al., Fermi Symposium (Nov. 2015)

GRB 090926A revisited: HE break temporal evolution

Time a hima	a [0, 0, a, 10, 5, a]			J1 [10 5	a 1 2 0 al	10 [10 0 - 0	1 (a]
1 ime bins	c [9.8 S, 10.3 S]	a [10.5 s, 21.6 s]		a1 [10.5 \$, 12.9 \$]		u2 [12.9 \$, 21.6 \$]	
Efolding (MeV)	335 -45 +65	$(1.20 - 0.18 + 0.22) \times 10^3$		550 -100 +130		$(1.44 - 0.25 + 0.49) \times 10^3$	
Significance (nb. sigma)	7.6	6.1		4.3		5.1	
Significand Time bin c :	e of the cutoff	70	c	d1	d2	PRELD	LAT data
better constrained Time bin d : new spectral break is detected at 1.2 GeV						M	INARY
Temporal er Time bin c : no evolution Time bin d : Increase fro	volution was found m 550 MeV (d1)	to 1.4 GeV (d2) ₂₀		լել			-
		10 0					
			10	12	14 Time s	16 18 since T0	20

M. Yassine et al., Fermi Symposium (Nov. 2015)

GRB 090926A HE break = IC curvature (interpretation 1)

Example of a single pulse synthetic burst (not adjusted to reproduce GRB 090926A)

- Observed spectral evolution, Ebreak(CUTBPL): $KN \rightarrow Thomson$ when Epeak(Band)?
- The comparison with the observed slopes is promising
- The detailed shape (peaks, fluence ratio) is not reproduced yet : a better comparison needs a dedicated simulation of GRB 090926A (ongoing work)
- M. Yassine et al., Fermi Symposium (Nov. 2015)

• Following Hascoet et al. 2012, MNRAS 421, 525

$$\Gamma = \Gamma_0(E_{cutoff}, \Delta t_{var}) \left[\frac{1}{2} \left(1 + \frac{R_{GeV}}{R_{MeV}} \right) \left(\frac{R_{GeV}}{R_{MeV}} \right) \right]^{-1/2}$$

• $150 < \Gamma_0 < 200$ (similar to Ackermann 2011)

- Γ decreases with increasing ratio between the GeV and MeV emission radii
- Similar Γ values in the 4 time bins

Time bins (duration)	c (0.7s)	d (11.1s)	d1 (2.4s)	d2 (8.7s)
Ecutoff (MeV)	335	1.2x10 ³	550	1.4x10 ³
$\Delta t_{var}(s)$	0.15	1	0.5	1

M. Yassine et al., Fermi Symposium (Nov. 2015)

GRB population studies at high energies are now possible with Fermi

- Short and long GRBs seem to share similar properties
- Both have relativistic outflows, but the distribution of jet Lorentz factors might be broad
- GRB >100 MeV emission is delayed & temporally extended w.r.t. the emission in the keV--MeV range

Prompt emission phase observed over a wide energy range

- Complex spectral shapes are needed to reproduce the spectrum
- Broad-band physical models are a pre-requisite to understanding GRB high-energy emission
- Origin of the delayed onset of the LAT >100 MeV emission?
- Understanding the transition from the prompt emission phase to the early phase is of great importance

• Long-lived GeV emission is consistent with the canonical afterglow model

- But LAT observations of GRB 130427A put severe constraints on the FS synchrotron emission model

Future prospects

- SVOM will bring new spectro-temporal diagnosis covering the entire activity of each GRB
- New constraints on GRB physics at the highest energies are expected from VHE detections in a few but invaluable cases in the coming years

F. Piron, "Gamma-Ray Bursts at high and very high energies", http://arxiv.org/abs/1512.04241

Backup

Improved GRB studies with LAT Pass 8 data

- Pass 6 data: release in August 2009
 Pre-flight
- Pass 7 data: release in August 2011
 - Fix for so-called "ghosts"
- Pass 8 data: release in 2015
 - Includes virtually every aspect of the data-reduction process

More GRB detections

- Pass 8: larger effective area, better PSF, lower energy threshold for spectral analysis
- New GRB detection algorithm

F. Piron - Atelier OCEVU, 22/03/2016

First LAT GRB catalog

• GRB 130427A

- GRB 090902B: 33.4 GeV photon at T₀+81.8 s
- GRB 080916C: 27.5 GeV photon at T₀+40.5 s (~150 GeV rest frame, z=4.35) in Pass 8 data

Ackermann et al. 2014, Science 343, 42

The Cherenkov Telescope Array

- Two arrays (North & South) of Imaging Atmospheric Cherenkov Telescopes (IACTs)
 - Limited fields of view (few deg)
 → pointing instruments
 - Low duty cycle (~10%)
- Large Size Telescopes (LSTs)
 - A few 23-m diameter telescopes
 - ~20 GeV to 1 TeV
- Medium Size Telescopes (MSTs)
 - Core array: ~40 12-m telescopes
 - ~ ~1 km² array, 100 GeV to 10 TeV
 - Sensitivity of ~1 mCrab at 1 TeV
- Small Size Telescopes (SSTs)
 - ~40 6-m telescopes on a ~10 km² area
 - Energies > 10 TeV

GRB observations with CTA

- The Fermi/LAT signal is limited above 10 GeV
- GRB observations at very high energies need
 - **Low-energy threshold** to fight the EBL \rightarrow strongly depends on the LST performance (few 10's GeV threshold)
 - Fast repointing: 180° in 20 s (LSTs)
 - Scanning mode possible
- CTA GRB rate: estimates range from 1 GRB every 20-30 months to 1-2 GRBs/yr

Inoue et al. 2013, APh 43, 252 Gilmore et al. 2013, Exp Astron 35, 413

- Intrinsic spectrum extrapolated from Fermi/LAT
- Spectrum determination between 50 GeV and 100 GeV (if no spectral break <100 GeV)

The HAWC experiment

Abeysekara et al. 2012, APh 35, 641

- High-Altitude Water Cerenkov detector
 - 4100 m a.s.l., 249 km East of Mexico city
 - Synoptic detector (~1 sr FoV)
 - High duty cycle (~100%)
 - Higher energy threshold and lower sensitivity than IACTs
- 300 water tanks, 4 PMTs each
 - 7.3 m diameter x 4.5 m deep
 - Covering 22 500 m² area
- Depth and spacing of PMTs optimized for γ-ray sensitivity from 100 GeV to 100 TeV

GRB observations with HAWC

Main DAQ

- Trigger rate ~8 kHz
- Gives direction, species, and energy of primary particle
- Scalers
 - Measure PMT counting rates
 - Energy threshold of a few GeV

- Main DAQ and scalers, 20° zenith angle
- Various z, EBL absorption included

GRB 090510

Time lags

Preece et al. 2014, Science 343, 51

Bosnjak Z. & Daigne 2014, astro-ph/1404.4577

- Spectral lag and pulse width in good agreement
- Epeak evolves as t⁻¹ as expected