High-energy neutrino search from (galactic) transient sources

Alexis Coleiro APC / Université Paris Diderot

Workshop « Physics of relativistic outflows » 23/03/2016

ARIS DIDEROT

Outline

I. Introduction

- > Transient high-energy sources (microquasars and AGN)
- > Particle acceleration mechanisms + observational constraints

II. Neutrino emission (theoretical models)

- > p-p interactions
- > p-gamma interactions

Outline

1

I. Introduction

- > Transient high-energy sources (microquasars and AGN)
- > Particle acceleration mechanisms + observational constraints

II. Neutrino emission (theoretical models)

- > p-p interactions
- > p-gamma interactions

Merging compact objects

Supernovae

The unknown

Fast radio bursts

Accreting binaries

Magnetars Pulsars

Gamma-ray

AGN

Merging

compact objects

Supernovae

The unknown

AGN

Timescales: from the ms to the year

Accreting binaries

Magnetars Pulsars

Fast radio bursts

Merging

compact objects

Supernovae

The unknown

Timescales: from the ms to the year Flaring all over the electromagnetic spectrum

Accreting binaries

Magnetars Pulsars

Gamma-ray

Fast radio bursts

Merging

compact objects

Supernovae

The unknown

Timescales: from the ms to the year Flaring all over the electromagnetic spectrum Multi-messenger emission (?)

Accreting binaries

Magnetars Pulsars

Fast radio bursts

Presence of a compact object which is accreting matter

 \Rightarrow accretion/ejection mechanisms

Microquasars

Mildly relativistic large-scale jets V_{jet} ~ 0.1c to 0.9c

Microquasars

> to better understand particle acceleration and HE phenomena

Two main models:

Gamma-ray binaries

Two main models:

Jet formation mechanisms

Energy source to power the jet?

- Accretion disk: $L_{acc} \propto \dot{M}_{acc} c^2$
- Spinning black hole: $L_{spin} \propto a_s^2 B^2$

but still need another mechanism to explain the acceleration to relativistic velocities

Jet formation mechanism not established yet Find observational signatures to distinguish between:

-accretion disc rotation model (Blandford & Payne 1982) : hadronic jets (?) -black hole spin model (Blandford & Znajek 1977) : based on the birth of a dense, relativistic pair plasma in a strongly magnetized region : leptonic jets

Russell et al., 2013

- One of the most important uncertainty: jet composition !
- In nearly all cases: jet radiation = synchrotron (only requires leptons)
 ⇒ not clear whether the jets are composed of e⁺/e⁻ or p/e⁻
- Two exceptions: SS 433 and 4U 1630-47 (?):

BUT detection of such "smoking gun" lines from jets having Lorentz factors well in excess of unity may be far more difficult than in SS 433, as the lines are anticipated to be very broad...

- One of the most important uncertainty: jet composition !
- In nearly all cases: jet radiation = synchrotron (only requires leptons)
 ⇒ not clear whether the jets are composed of e⁺/e⁻ or p/e⁻
- Two exceptions: SS 433 and 4U 1630-47 (?):

BUT detection of such "smoking gun" lines from jets having Lorentz factors well in excess of unity may be far more difficult than in SS 433, as the lines are anticipated to be very broad...

Outline

I. Introduction

- > Transient high-energy sources (microquasars and AGN)
- > Particle acceleration mechanisms + observational constraints

II. Neutrino emission (theoretical models)

- > p-p interactions
- > p-gamma interactions

III. (First) observational constraints

Neutrino emission

Leptonic processes ?

Inverse Compton Synchrotron

2

Hadronic processes ?

 $\gamma + \gamma \rightarrow \pi^0 + p$

<mark>ρ + γ → π</mark>+ + r

Neutrino emission

Leptonic processes ?

Inverse Compton Synchrotron

2

Hadronic processes ?

 $p + p \rightarrow p + p + \pi^{o}$

 $p + p \rightarrow \pi^+ + p + n$

2 X-ray binaries viewed by ANTARES

Several models describe neutrino emission from X-ray binaries:

p-p or p-¥ interaction between jet and matter/radiation from the companion star or inside the jet directly:

<u>see e.g.</u> :

 Romero et al.: « heavy jets » with dominant p+p collision : require large matter density (>10¹⁰ cm⁻³):

may be valid for HMXB e.g. Cyg X-3 :

stellar wind with mass loss rate 10⁻⁵ M_{\odot}/yr et v_{∞} =1000 km/s

 \rightarrow d>10¹¹cm⁻³ at r=10¹² cm from the star

 Levinson & Waxman; Aharonian et al.; Mannheim et al.: relativistic jet interacting with dense photon field (LMXB): photohadronic models

Basic ingredients if p-V interaction

shock

In small scales (<10¹¹ cm), inhomogeneities in the jet cause internal shocks

e.

e

p

e

р

e

e

Acceleration of protons and electrons to a power-law distribution (Emax ~10¹⁶ eV in jet frame)

γ synchrotron

shock

e.

e

р

p

р

γ accretion disk

Protons interact with X-ray photons from the accretion disk or with synchrotron photons inside the jet

shock

ک synchrotron

e-

e

p

р

р

accretion disk

Pion created with ~20% of the proton energy depends on the jet Lorentz factor and on the kinetic luminosity of the jet (which depends on the Lorentz factor and the magnetic field) shock

۲ synchrotron

e.

e-

р

Π

р

e

р

ک accretion disk

 \Rightarrow neutrino emission with energy ~5% of the proton energy

Outline

I. Introduction

- > Transient high-energy sources (microquasars and AGN)
- > Particle acceleration mechanisms + observational constraints

II. Neutrino emission (theoretical models)

- > p-p interactions
- > p-gamma interactions

Neutrino astronomy in the Mediterranean

> Look at high energy events

Neutrino astronomy

3 The ANTARES neutrino telescope

3 Neutrino astronomy in the Mediterranean

Mediterranean / South Pole

Optical noise (biolum) + K40 / no noise

Absorption / diffusion

Mediterranean : logistically attractive

IceCube cosmic neutrino signal

IceCube cosmic neutrino signal

IceCube cosmic neutrino signal

)	TS=2log(L/L0)	13.2

Neutrino emission in the Galactic plane region

3

Number of events required for a 5o discovery (50% probability)

$$\begin{split} & \underbrace{\mathbf{r}_{\mathbf{k}} \mathbf{w}_{\mathbf{k}} \mathbf{w}_{\mathbf{k$$

2009

0.1

 $\mathsf{P}_{\mathsf{sg}}(\mathsf{t})$

2010

2012

2013

3 X-ray binaries viewed by ANTARES

accretion disk + jet (expected)

particle acceleration and neutrino production ?

-Distefano et al. 2002 -Romero et Orellana 2005 (HMXB) -Bednarek 2005 (HMXB) -Zhang et al. 2010 (LMXB) -Pepe et al. 2015 (Cyg X-1) -Vila et al. 2002 (GX 339-4)

Table 1. List of 33 X-ray binaries with significant flares selected for this analysi								
	Name	Class	$RA [^{\circ}]$	Dec $[\circ]$				
	Cyg X-1	HMXB (BH)	230.170	-57.167				
	1A 0535+262	HMXB (NS)	84.727	26.316				
	1A 1118-61	HMXB (NS)	170.238	-61.917				
	Ginga 1843+00	HMXB (NS)	281.404	0.863				
	GS 0834-430	HMXB (NS)	128.979	-43.185				
	GX 304-1	HMXB (NS)	195.321	-61.602				
	H 1417-624	HMXB (NS)	215.303	-62.698				
	MXB 0656-072	HMXB (NS)	104.572	-7.210				
	XTE J1946+274	HMXB (NS)	296.414	27.365				
	GX 1+4	HMXB (NS)	263.009	-24.746				
	MAXI J1409-619	HMXB (NS)	212.011	-61.984				
	GRO J1008-57	HMXB (NS)	152.433	-58.295				
	GX 339-4	LMXB (BHC)	255.706	-48.784				
	4U 1630-472	LMXB (BHC)	248.504	-47.393				
	IGR J17091-3624	LMXB (BHC)	257.282	-36.407				
	IGR J17464-3213	LMXB (BHC)	266.565	-32.234				
	MAXI J1659-152	LMXB (BHC)	254.757	-15.258				
	SWIFT J1910.2-0546	LMXB (BHC)	287.595	-5.799				
	XTE J1752-223	LMXB (BHC)	268.063	-22.342				
	SWIFT J1539.2-6227	LMXB (BHC)	234.800	-62.467				
	4U 1954+31	LMXB (NS)	298.926	32.097				
	Aql X-1	LMXB (NS)	287.817	0.585				
	Cir X-1	LMXB (NS)	230.170	-57.167				
	EX O1745-248	LMXB (NS)	267.022	-24.780				
	H 1608-522	LMXB (NS)	243.179	-52.423				
	SAX J1808.4-3658	LMXB (NS)	272.115	-36.977				
	XTE J1810-189	LMXB (NS)	272.586	-19.070				
	4U 1636-536	LMXB (NS)	250.231	-53.751				
	4U 1705-440	LMXB (NS)	257.225	-44.102				
	IGR J17473-2721	LMXB (NS)	266.825	-27.344				
	MAXI J1836-194	XRB (BHC)	278.931	-19.320				
	XTE J1652-453	XRB (BHC)	253.085	-45.344				
	SWIFT J1842.5-1124	XRB (BHC)	280.573	-11.418				

particle acceleration and neutrino production ?

-Bartosik et al. 2003 -Anchordoqui et al. 2003 -Bednarek 2009 -Neronov & Ribordy 2009

Distefano et al. photohadronic model

Non-resolved microquasars :

3

Comparison with model of Distefano et al., 2002 (takes into account jet parameters)

Comparison with model of Distefano et al., 2002 (takes into account jet parameters)

Circinus X-1 (neutron star + normal star)

Comparison with model of Distefano et al., 2002

Enable to constrain η_p/η_e = ratio of jet energy fraction carried by accelerated protons and electrons

Upper limit on η_p/η_e for Circinus X-1 (neutron star + normal star)

Are the jet parameters similar for each burst ?... not sure at all !

but still some limitations...

cannot exclude that:

- protons lose smaller energies into pion decay
- lower Γ
- variable jet parameters vs time
- compact jets / discrete ejections
- magnetic field impact on neutrino emission (see Reynoso & Romero, 2009)
- microquasar activity signature: high-energy vs radio observations
- need high angular / high sensitivity / wide field of view radio observations

New / future radio (wide-field) instruments:

- -estimation of $\beta = v/c$ and θ (if distance is known) + spatial extension of the jet
- + polarization at different scales
- + proper motion (\Rightarrow exact timing of ejection event)

3 X-ray binaries viewed by ANTARES

GX 339-4 (Zhang et al., 2010)

pp + p-gamma interactions

Gamma-ray binaries viewed by Antares

	PSR B1259-63*	LS 5039 [†]	LS I +61°303•	HESS J0632+057 [°]	1FGL J1018.6-5856 [‡]
P _{orb} (days)	1236.72432(2)	3.90603(8)	26.496(3)	315(5)	16.58(2)
е	0.8698872(9)	0.35(3)	0.54(3)	0.83(8)	-
ω (°)	138.6659(1) [‡]	212(5)	41(6)	129(17)	-
<i>i</i> (°)	19–31	13–64	10–60	47-80	-
d (kpc)	2.3(4)	2.9(8)	2.0(2)	1.6(2)	5.4
spectral type	O9.5Ve	O6.5V((f))	B0Ve	B0Vpe	O6V((f))
$M_{\star}~(\mathrm{M}_{\odot})$	31	23	12	16	31
$R_{\star}~(\mathrm{R}_{\odot})$	9.2	9.3	10	8	10.1
T_{\star} (K)	33500	39000	22500	30000	38900
$d_{\text{periastron}}$ (AU)	0.94	0.09	0.19	0.40	(0.41)
d_{apastron} (AU)	13.4	0.19	0.64	4.35	(0.41)
$\phi_{ m periastron}$	0	0	0.23	0.967	-
$\phi_{ ext{sup. conj.}}$	0.995	0.080	0.036	0.063	-
$\phi_{ m inf.~conj.}$	0.048	0.769	0.267	0.961	-

★ Wang et al. (2004); Moldón et al. (2011a); Negueruela et al. (2011)

† McSwain et al. (2004); Casares et al. (2005, 2011)

• Howarth (1983); Frail & Hjellming (1991); Martí & Paredes (1995); Gregory (2002); Aragona et al. (2009)

Aragona et al. (2010); Casares et al. (2012); Bordas & Maier (2012)

‡ Fermi/LAT collaboration et al. (2012b); Napoli et al. (2011)

argument of periastron of the pulsar orbit (massive star for the others systems)

Gamma-ray binaries viewed by Antares

Looking for a potential neutrino transient emission in time coincidence with TeV gammarays: work in progress...

3 X-ray binaries viewed by ANTARES

Cyg X-3 (Baerwald & Guetta, 2013 - Sahakyan et al., 2014)

Looking for a potential neutrino transient emission in time coincidence with 2015 flaring period of V404 Cygni

Multi-messenger era > the next future

Nulti-messenger era > online follow-up

3

Note: Note:

- E ~50-100 TeV
- Error box=18 arcmin
- Sent in 10s to Swift and Master
- Swift obs: +9h
- Master obs: +10h

- Swift: uncatalogued and variable Xray source within 8 arcmin
- Optical: Bright star at Swift follow-upwtthp多W中行外不T:

Multi-messenger era > The ANT091501A alert

3

logL_x

MWA / ANTARES first follow-up

Low-freq. radio telescopes with large field of view → enable follow-up (of neutrino events)

First joint study: MWA / ANTARES (ApJ in press)

118-182 MHz

8

 σ_S / \bar{S}

 σ_S / \bar{S}

GW150914 neutrino follow-up

3

online ANTARES and IceCube data
 Consistent with the background expectations

GW150914 neutrino follow-up

54

 $(F/100T_{0})^{1/2}$

Constraints on the total energy emitted in neutrinos

$$\mathbf{E}_{\nu,\text{tot}}^{\text{ul}} \sim 10^{52} \text{--} 10^{54} \left(\frac{D_{\text{gw}}}{410 \,\text{Mpc}}\right)^2 \,\text{erg}$$

- $\leq 1/100$ of the energy radiated in GW: ~5 x 10⁵⁴ erg
- Joint GW and neutrino searches
 improve the efficiency of electromagnetic follow-up:
 - neutrino direction accuracy: <0.5deg² for ANTARES
 - GWs direction reconstruction: ≥ 100deg²

→ joint candidate provides greatly reduced sky area for follow-up !!
 (event filtering delay: ~3-5 s for ANTARES and ~1 min for LIGO-Virgo)

Conclusions

ANTARES and IceCube start to rule out some (photo-)hadronic interactions

• KM3NeT more sensitive than IceCube to the Galactic plan region ! (ANTARES is already competitive in this part of the sky)

• Multi-wavelength/**multi-messenger** approach crucial to identify the sources/further constrain hadronic/leptonic mechanisms

Thank you for your attention !